Journal of Organometallic Chemistry, 236 (1982) 69–70 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESIS AND CHARACTERISATION OF THE FIRST EXAMPLE OF A TETRASTANNACYCLOHEXANE

KLAUS JURKSCHAT * and MARCEL GIELEN **

Vrije Universiteit Brussel - TW - AOSC, Pleinlaan 2, B-1050 Brussels (Belgium) (Received April 26th, 1982)

Summary

The synthesis and spectral properties of 2,2,3,3,5,5,6,6-octaphenyl-2,3,5,6-tetrastannacyclohexane are described.

Introduction and results

A recent paper by Kuivila [1] describing the unusual behavior of bis(stannyl)methanes prompts us to report the preparation of the first example of a tetrastannacyclohexane starting from an analogous bis(stannyl)methane. We find that bis(bromodiphenylstannyl)methane (I) [2] is readily transformed into 2,2,3,3,5,5,6,6-octaphenyl-2,3,5,6-tetrastannacyclohexane (II) upon treatment with sodium in liquid NH₃ at -80° C.

(11,63%)

Experimental

Compound (II) was obtained by treatment of I with an excess of sodium in liquid NH₃ at -80° C. The product was recrystallized from CH₂Cl₂/CH₃OH,

^{*} Present address: Department of Chemistry, Martin-Luther University, Halle/S (G.D.R.).

^{**} Author to whom correspondence should be directed.

(m.p. 180–182°C), it shows in its ¹H NMR spectrum (CDCl₃) the expected CH₂ signal at 1.14 ppm (²J(¹¹⁹Sn–C–¹H) 56.8 Hz; ³J(¹¹⁹Sn–Sn–C–¹H) 22.8 Hz). Its ¹³C NMR spectrum shows for the same CH₂ group a line at –12.53 ppm (¹J(¹¹⁹Sn–¹³C) 183.2 Hz; ²J(¹¹⁹Sn–Sn–¹³C) 66.9 Hz). For the phenyl carbons directly linked to the tin, δ 140.72 ppm (¹J(¹¹⁹Sn–¹³C) 383.3 Hz; ³J(¹¹⁹Sn–C–Sn–¹³C) 63.2 Hz; ²J(¹¹⁹Sn–Sn–¹³C) 18.8 Hz). The ortho-carbons resonate at δ 136.87 ppm (³J(¹¹⁹Sn–C–^{.13}C) 41.2 Hz; ²J(¹¹⁹Sn–Sn–C–¹³C) 8.3 Hz). The meta-carbons appear at 128.43 ppm (³J(¹¹⁹Sn–C–^{.13}C) 47.3 Hz) and the para ones, at 128.47 ppm. The 70 eV mass spectrum of compound II shows complex patterns, such as those corresponding to (C₆H₅)₆Sn₄(CH₂)₂⁺, (C₆H₅)₄Sn₃(CH₂)₂⁺ and (C₆H₅)₃Sn₂CH₂⁺.

Acknowledgements

The financial support obtained for the postdoctoral stay of K.J. from the Ministerie van Nationale Opvoeding en Nederlandse Cultuur (Bestuur voor internationale en culturele betrekkingen) is gratefully acknowledged.

References

2 K. Jurkschat and M. Gielen, in preparation; K. Jurkschat and M. Gielen, Bull. Soc. Chim. Belg., in press.

¹ J.R. Hyde, T.J. Karol, J.P. Hutchinson, H.G. Kuivila and J. Zubieta, Organometallics, 1 (1982) 404.